

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Semester: 3 rd			
Paper code: AIDS255/AIML255/IOT255	L	T/P	Credits
Subject: Digital Logic Design Lab	0	2	1
Marking Scheme			

warking Scheme

- 1. Teachers Continuous Evaluation: As per university examination norms from time to time
- 2. End term Examination: As per university examination norms from time to time

INSTRUCTIONS TO EVALUATORS: Maximum Marks: As per university norms

- 1. This is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which the appear is being offered from the list of practicals below.
- 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 4. At least 8 experiments must be performed by the students.

Course Objectives:

1.	To familiarize with the understanding of various aspects of designing real life applications
	through digital logic.

2. Design and analysis of the digital circuits and systems.

Course Outcomes:

CO1	Design an experiment to and circuit simulation.	o validate	through	hypothesis,	a Boolean	logic	gates,	truth	table
	and circuit simulation.								

CO2 Create circuits to solve real life problems via digital logic design.

CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	1	1	1	1	1	1	1

LIST OF EXPERIMENTS:

- 1. a) Introduction to Digital Logic Trainer kits and their function.
 - b) Verify the truth table of Basic logic gates using their ICs.
 - c) Realize logic functions of NOT, AND, OR, EX-OR, EX-NOR with the help of

universal gates-NAND and NOR Gates.

2. a) Verify De-Morgan's theorem for two variables using basic gates.

b) Realize Sum of Product (SOP) and Product of sum (POS) expressions using universal gates.

- 3. Realize Binary to Gray & Gray to Binary code converter and their truth table.
- 4. Design and test the Adder circuit.

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

- a) Half Adder
- b) Full Adder
- c) Parallel Adder using 7483
- 5. Design and test the Subtractor circuit.
 - a) Half Subtractor
 - b) Full subtractor
- 6. Design and test the Multiplexer circuit.
 - a) 8:1 Multiplexer using IC 74151
 - b) 1:8 Demultiplexer circuit using IC 74138
- 7. Verify and test the Counter circuit.
 - a) BCD Counter using ICs 7493
 - b) Ring counter using 7495
 - c) Johnson Ring Counter using 7495
- 8. Design and implement Comparator circuit.
 - a) 1 bit comparator
 - b) 4 bit magnitude Comparator using 7485
- 9. Design and implement Encoder circuit.
 - a) Decimal to BCD Encoder using IC 74147
 - b) Octal to Binary Encoder using IC 74148
- 10. Verify 2:4 Decoder using seven segment decoder and using ICs 7447.
- 11. Investigate the operation of various Flip-Flops using IC 7400, 7410.
 - a) SR & Clocked Flip flop
 - b) D flip flop
 - c) T flip flop
 - d) JK flip flop
- 12. Realize Shift Register using ICs 7495.
 - a) SISO (Serial in Serial out)
 - b) SIPO (Serial in Parallel out)
 - c) PIPO (Parallel in Parallel out)
 - d) PISO (Parallel in Serial out)